
BG/L: 
Tuning for Many Nodes (Linpack)

John A. Gunnels
Mathematical Sciences Dept.

IBM T. J. Watson Research Center



BG/L: 
Tuning for Many Nodes (Linpack)
on a new machine that everyone 
wants for equally valid reasons

John A. Gunnels
Mathematical Sciences Department
IBM T. J. Watson Research Center



Overview
Overcoming a computational bottleneck
Problem Mapping
Communication operations

Row broadcast
Column broadcast
Pivot identification
Pivot row exchange

Linear algebra kernels (single node)
Matrix multiplication
Triangular solve, multiple RHS
Scaling, rank-1 updates (code fusion)



LU Factorization: Brief Review

Already
factored

Pivot and scale
columns

DTRSM

DGEMM

Current block



LINPACK
Physical to Logical Mapping

Physical
BG/L

Machine

32
32

64

P(I,J,K)

Logical
Processor

Grid

(0,
0,
0)

(0,
1,
0)

(31,
31,
0)

(0,
0,
1)

(31,
31,
1)

(0,
0,
63)

(31,
31,
63)

64

1024

L(32I+J,K)

b

b



LINPACK
Problem Mapping

...
16n
repetitions n repetitions

N



Panel Factorization: Option #1 
Exploit Load Imbalance

Distributed over relatively few processors
Especially in the 64K node case

May take as long as several DGEMM updates
Value may change as libraries change

DGEMM load imbalance
Block size trades balance for speed

Want to use collective communication 
primitives if possible

May require no “holes” in communication fabric 
(to achieve near-optimal performance)



Speed-up Option #2: 
Reduce Load Imbalance

Change the data distribution
Decrease the critical path length

Speed up panel factorization

Take advantage of communication abilities of 
machine

Complements Option #1 
Memory size (small favors #2; large #1)

Memory hierarchy (high latency: #1)

The two options can be used in concert



Communication Routines

Broadcasts precede DGEMM update
Routine needs to be architecturally aware

Multiple “pipes” connect processors

Physical to logical mapping must be carefully 
managed
Careful orchestration is required to take 
advantage of machines considerable abilities



Row Broadcast
Mesh



Row Broadcast
Mesh



Row Broadcast
Mesh



Row Broadcast
Mesh



Row Broadcast
Mesh



Row Broadcast
Mesh



Row Broadcast
Mesh



Row Broadcast
Mesh



Row Broadcast
Mesh



Row Broadcast
Mesh



Row Broadcast
Mesh

Recv 2
Send 4
Hot Spot!



Row Broadcast
Mesh

Recv 2
Send 3



Row Broadcast
Torus



Row Broadcast
Torus



Row Broadcast
Torus



Row Broadcast
Torus



Row Broadcast
Torus



Broadcast
Bandwidth/Latency

Bandwidth: 2 bytes/cycle per wire
Latency: 

Sqrt(p), pipelined (large msg.)
Deposit bit: 3 hops

Mesh
Recv 2/Send 3

Torus
Recv 4/Send 4 (no “hot spot”)
Recv 2/Send 2 (red-blue only … again, no bottleneck)

Pipe
Recv/Send: 1/1 on mesh; 2/2 on torus



Conclusion
Avoiding Bottlenecks

Overlapping differing computations
Beneficial on large or “memory walled” machines

Duplicating computations (local state)
Combine with moving from critical path 

Or make “critical” less so

Take advantage of hardware’s abilities
Algorithms & Architectures approach

“Mom & apple pie” (fundamental triangle; K-4)
Difference between good and optimal

Many characteristics are dynamic, but there is often a “safe”
(fallback) method/approach/parameter



Conclusion

Make use of models, extrapolated data
Use models to the extent that the architecture and 
algorithm are understood
Extrapolate from small processor sets
Vary as many (yes) parameters as possible at the 
same time

Consider how they interact and how they don’t
Also remember that instruments affect timing

Often can compensate (incorrect answer results)

Utilize observed “eccentricities” with caution 
(MPI_Reduce)



Conclusion

Data Structures & Communications
Global: Altered distribution

Use as much hardware as possible
Have a path for software maturing process

Local: Recursive Data Formats (2nd talk)
Take advantage of local processor features
Large flops/memory ratio leads to an enter, re-
map, execute, undo, exit pattern

Code fusion (2nd talk)



Conclusion II
1.4 TF Linpack on BG/L Prototype: 

Components

0.02%

0.05%

81.35%

0.73%

8.97%

2.07%
0.15%0.52%0.03%0.09%

1.55%
0.01%

3.39%
0.48%

0.60%

6.03%

Scale

Rank1

Gemm

Trsm

BcastA

BcastD

Pack

Unpack

Idamax

pdgemm

FWDPiv

BackPiv



Thanks to …
Gheorghe Almasi & Phil Heidelberger: 
MPI/Communications
Vernon Austel: Data copy routines
Gerry Kopcsay & Jose Moreira: System & 
machine configuration
Derek Lieber & Martin Ohmacht: Refined 
memory settings
Everyone else: System software & 
Machine time!



BG/L: 
Tuning for Many Nodes (Linpack)

John A. Gunnels
Mathematical Sciences Dept.

IBM T. J. Watson Research Center


	BG/L: Tuning for Many Nodes (Linpack)
	BG/L: Tuning for Many Nodes (Linpack)on a new machine that everyone wants for equally valid reasons
	Overview
	LU Factorization: Brief Review
	LINPACKPhysical to Logical Mapping
	LINPACKProblem Mapping
	Panel Factorization: Option #1 Exploit Load Imbalance
	Speed-up Option #2: Reduce Load Imbalance
	Communication Routines
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastMesh
	Row BroadcastTorus
	Row BroadcastTorus
	Row BroadcastTorus
	Row BroadcastTorus
	Row BroadcastTorus
	Broadcast
	Conclusion
	Conclusion
	Conclusion
	Conclusion II
	Thanks to …
	BG/L: Tuning for Many Nodes (Linpack)

